Pentachloro- and Pentabromo-titanate(IV) ions

By Colin S. Creaser and J. Alan Creighton,* University Chemical Laboratory, Canterbury CT2 7NH

The reactions between titanium(IV) chloride and tetra-alkylammonium chlorides and between titanium(IV) bromide and tetra-alkylammonium bromides, in solution in dichloromethane, have been studied by Raman and i.r. spectroscopy. The five-co-ordinate ions [TiCl₅]- and [TiBr₅]- have been clearly identified for the first time. These ions and the other singly charged species $[Ti_2Cl_9]^-$ and $[Ti_2Br_9]^-$ are the only anions detected by Raman spectroscopy in the dichloromethane solutions. The preparations of the tetrabutylammonium salts [Bu₄N][TiCl₅] and [Bu₄N][TiBr₅] and of tetraphenylarsonium pentachlorotitanate are described, but the corresponding saits of the smaller tetraethyl- and tetrapropyl-ammonium cations are shown to be [Et₄N]₂[Ti₂Cl₁₀]. $[\mathsf{Et}_4\mathsf{N}]_2[\mathsf{Ti}_2\mathsf{Br}_{10}],$ and $[\mathsf{Pr}_4\mathsf{N}]_2[\mathsf{Ti}_2\mathsf{Cl}_{10}]$ with binuclear halogen-bridged anions.

ALTHOUGH several pentachloro-anionic species have now been well established, including the ions $[InCl_5]^{2-}$, [TlCl₅]²⁻, [GeCl₅]⁻, [SnCl₅]⁻, [CuCl₅]³⁻, and [CdCl₅]^{3-,1-5} there have been no reports of the existence of the corresponding chlorine-bridged dimeric species $[M_2Cl_{10}]^{n-}$. (A statement ⁶ that earlier workers ⁷ had identified the complex $[{\rm Cl}_4 P]_2 [{\rm Sn}_2 {\rm Cl}_{10}]$ appears to be the result of a mistranslation.) This is in contrast to the situation with the uncharged molecular species where, with the probable exception of phosphorus pentachloride,⁸ all the known pentachlorides have been shown to exist both as MCl₅ molecules and as chlorine-bridged dimers, in several cases with both forms existing even in the solid or liquid states.9-11

This paper reports the identification of the trigonalbipyramidal ions [TiCl₅]⁻ and [TiBr₅]⁻, both in solution and as their tetrabutylammonium salts. Since the [Ti₂Cl₁₀]²⁻ ion has already been established in the salt $[Cl_4P]_2[Ti_2Cl_{10}]$ by X-ray studies,⁶ this work provides the first example where both the $[MCl_5]^-$ and $[M_2Cl_{10}]^{2-}$ ions are known. The tetraethylammonium salt, however, which was earlier suggested ³ to contain [TiCl₅]⁻ ions, is shown to be $[Et_4N]_2[Ti_2Cl_{10}]$, and the analogous bromocomplex is also reported. It is thus clear that the anion structure adopted in these halogenotitanates is dependent on the size of the cation, as the following series of tetraethylammonium, tetrapropylammonium, tetrabutylammonium, and tetraphenylarsonium salts established in this study shows: $[Et_4N]_2[Ti_2Cl_{10}]$, $[Pr_4N]_2[Ti_2Cl_{10}], [Bu_4N][TiCl_5], [Ph_4As][TiCl_5];$ and $[Et_4N]_2[Ti_2Br_{10}]$ and $[Bu_4N][TiBr_5]$.

RESULTS AND DISCUSSION

Salts of the $[Ti_2Cl_{10}]^{2-}$ and $[Ti_2Br_{10}]^{2-}$ Ions.—The Raman spectrum of $[Cl_4P]_2[Ti_2Cl_{10}]$ has already been published ¹² and this has been confirmed in the present study. When allowance is made for the bands due to

¹ D. F. Shriver and I. Wharf, *Inorg. Chem.*, 1969, **8**, 2167; D. S. Brown, F. W. B. Einstein, and D. G. Tuck, *ibid.*, p. 14. ² I. R. Beattie, T. Gilson, K. Livingston, V. Fawcett, and G. A. Ozin, *J. Chem. Soc.* (A), 1967, 712. ³ J. A. Creighton and J. H. S. Green, *J. Chem. Soc.* (A), 1968,

808. ⁴ M. Matsui, S. Koda, S. Ooi, H. Kuroya, and I. Bernal, *Chem. Letters*, 1972, 51; I. Bernal, N. Elliott, and R. Lalancette, *Chem.*

K. N. Raymond, D. W. Meek, and J. A. Ibers, Inorg. Chem., 1968, 7, 1111; T. V. Long, A. W. Herlinger, E. P. Epstein, and I. Bernal, *ibid.*, 1970, 9, 459. ⁶ T. J. Kistenmacher and G. D. Stucky, *Inorg. Chem.*, 1971,

10, 122.

the cations, the Raman spectra of the $[PCl_4]^+$ salt and of the corresponding tetraethyl- and tetrapropylammonium salts are closely similar, notably in the presence of the two strong bands at 305-310 and 380- 385 cm^{-1} (Table 1). It is thus clear beyond doubt that

TABLE 1

Vibrational spectra (cm⁻¹) of the [Ti₂Cl₁₀]²⁻ and [Ti₂Br₁₀]²⁻ ions

[Et₄N]	[Ti2Cl10]	[Pr ₄ N] ₂ [Ti ₂ Cl ₁₀]	$[Cl_4P]$	2[Ti2Cl10]		[Ti2Br10]
I.r. ª	Raman	Raman	Ĩ.r.	Raman 6	I.r.	Raman
427m						
385vs	389vs	381vs	377vs	382 vs	308s	300s
346vs	355m	351m	350vs	361m	276vs,	
					br	
				342m		
317s	308s	309s	315s	309s	190s	192vs
			278m			
212m	233w	244w	223m,	243		
			br			
182w	ء 187	° 190	196w	187s	131mw	-
170m			172m		112mw	7
154w			153w	136m	100w	
				132m		
				128 (sh)		
			11 4 w	117s`́	76mw	7
83m			92w	64s	54w	

sh = Shoulder and br = broad.

"Ref. 3. "Ref. 12. Medium-intensity shoulder on an emission line of the laser.

both these quaternary ammonium salts are salts of the $[Ti_2Cl_{10}]^{2-}$ ion, which has already been established as the anion in the $[PCl_4]^+$ salt.⁶

There is also a close similarity between the i.r. spectra of $[Cl_4P]_2[Ti_2Cl_{10}]$ and of the corresponding $[Et_4N]^+$ salt, although this is not immediately clear from the published data.^{3,12} This is because of the listing of a number of bands of the $[PCl_4]^+$ salt as shoulders without an estimate of their relative intensities. We, therefore, remeasured the i.r. spectra of both these salts. Several

7 P. Reich and W. Wieker, Z. Naturforsch., 1968, B23, 739.

⁸ R. W. Suter, H. C. Knachel, U. P. Petro, J. H. Howatson, and S. G. Shore, *J Amer. Chem. Soc.*, 1973, 95, 1474; T. Kennedy, D. S. Payne, R. I. Reed, and W. Snedden, *Proc. Chem. Soc.*, 1959,

133. • W. Bues, F. Demiray, and H. A. Øye, Z. phys. Chem. (Frankfurt), 1973, 84, 18.

⁽¹⁾ ¹⁰ W. Bues, F. Demiray, and W. Brockner, Spectrochim.
¹⁰ W. Bues, F. Demiray, and W. Brockner, Spectrochim.
Acta, 1974, A30, 1709; K. Olie, C. C. Smitskamp, and H. Gerding, Inorg. Nuclear Chem. Letters, 1968, 4, 129.
¹¹ R. F. W. Bader and A. D. Westland, Canad. J. Chem., 1961, 39, 2306; R. A. Walton and B. J. Brisdon, Spectrochim. Acta, Acta, 2007.

1967, A23, 2489.

12 D. Nicholls and K. R. Seddon, Spectrochim. Acta, 1972, A23, 2399.

of the weak bands and shoulders in the spectrum of the $[PCl_4]^+$ salt reported previously ¹² were not confirmed, and the remaining bands were all sufficiently well resolved for an estimate of their relative intensities to be made. The published spectrum of the $[Et_4N]^+$ salt ³ was confirmed below 340 cm⁻¹ with the addition of a weak band at 154 cm⁻¹. These new measurements, showing the close similarity between the i.r. spectra of the two salts, are listed in Table 1.

In the earlier report of the i.r. spectrum of the $[Et_4N]^+$ salt ³ it was suggested that this salt contained $[TiCl_5]^-$ rather than $[Ti_2Cl_{10}]^{2-}$ ions, because of the absence of

TABLE	2
-------	----------

Vibrational spectra (cm⁻¹) of the [TiCl₅]⁻ and [TiBr₅]⁻ ions

[Bu ₄ N]	[TiCl ₅]	[Bu₄N][TiBr₅]	SPCI	5 (l) ª	Assignment
Raman	I.r.	Raman	I.r.	Raman	I.r.	
408w	411 m		341s	397 (2)	395vs	v_5, e'
			310 (sh)			
	355s		293vs,		371 vs	v_{3}, a_{2}''
			\mathbf{br}			
348vs b		209		357 (10))	v_{1}, a_{1}'
302vw				307 (4)	306w	v_2, a_1'
193m	190m			177 (4)	172s	v_{6}^{2}, e^{\prime} v_{4}, a_{2}^{\prime}
	178m			• •	154m	VA. 00'
166m				165(2)		v_8, e^{7}
	66m		$57 \mathrm{mw}$	72		ν_7, e'
						or lattice

^a Ref. 3, Raman relative intensities are given in parentheses. ^b For [Ph₄As][TiCl₅], v₁ was observed at 249vs cm⁻¹.

prominent bands in the region 250-300 cm⁻¹ expected for chlorine-bridge stretching. With much stronger by our observation that v_1 of $[\mathrm{TiCl}_6]^{2-}$ (320 cm^-1 in $[\mathrm{Et}_4\mathrm{N}][\mathrm{TiCl}_6])$ ¹⁴ is absent from the Raman spectrum of the same sample.

Also reported in this paper is the salt $[Et_4N]_2[Ti_2Br_{10}]$. This formulation as a salt of a binuclear anion is less certain than for $[Et_4N]_2[Ti_2Cl_{10}]$. The complex is very dark in colour and only its strongest Raman bands could be recorded (Table 1), and furthermore the i.r. spectrum was poorly defined with a broad absorption throughout the Ti-Br stretching region due to partly overlapping bands. However, these data are sufficient to show that this complex is not a salt of $[TiBr_5]^-$, whose frequencies are reported in Table 2. It is, therefore, concluded that it is the salt $[Et_4N]_2[Ti_2Br_{10}]$, analogous to the chloro-complex, and the data in Table 4 lend some support to this conclusion.

The $[\text{TiCl}_5]^-$ and $[\text{TiBr}_5]^-$ Ions.—Evidence for the $[\text{TiCl}_5]^-$ ion was first obtained when attempting to study the $[\text{Ti}_2\text{Cl}_{10}]^{2-}$ ion in solution for Raman polarization measurements. The Raman spectrum of a solution of equimolar amounts of tetrabutylammonium chloride and TiCl₄ in dichloromethane showed no evidence of the characteristic 385 cm⁻¹ band of the $[\text{Ti}_2\text{Cl}_{10}]^{2-}$ ion, but instead gave rise to a strong, highly polarized, band at 348 cm⁻¹ ($\rho < 0.1$). Addition of several volumes of light petroleum to this solution precipitated a complex which also showed this strong Raman band (Table 2), and whose analysis was consistent with the composition $[\text{Bu}_4\text{N}][\text{TiCl}_5]$. A similar procedure using tetrabutyl-ammonium bromide and TiBr₄ gave solutions showing a

Table	3
-------	---

Comparison of the	nost intense	Raman bands (cm ⁻¹) of sp	pecies [MX ₄] ⁿ⁻	, $[MX_5]^{(n+1)-}$, a	und [MX	$[3]^{(n+2)-}$ (X = C	l or Br)
	Α		в	$\frac{1}{2}(\mathbf{A} + \mathbf{B}) = 0$	D D		D – C	
[InCl ₄		[InCl ₆] ³⁻	277 ^b	299	[InCl ₅] ²⁻	294 ª	-5	
[TlCl ₄]- 312 ª	[TICl ₆] ³⁻	264 ^b	288	[TICl ₅] ² -	279 °	-9	
GeCl ₄	397	$[GeCl_6]^{2-1}$	- 309 ª	353	[GeCl ₅] ⁻	348 ª	5	
SnCl ₄	367 •	[SnCl ₆] ²⁻	- 309 ª	338	[SnCl ₅] ⁻	338 4	0	
SnBr ₄		$[\operatorname{SnBr}_6]^2$	- 182 ª	201	[SnBr ₅]-	202 a	+1	
[PCl ₄]	+ 451•	$[PCl_6]^-$	355 °	403	PCl ₅	393 a	-10	
[SbCl]- 342 °	SbCl ₆] ³⁻	· 267 ^b	305	[SbČl ₅] ²⁻	348 d	+43 ª	
[SbCl4]+ 353 •	[SbCl ₆]-	333 4	343	SbCl₅	353 •	+10	
TiCl4	388 ª	[TiCl ₆] ²⁻	320 f	354	[TiCl ₅]-	349	-5	
TiBr ₄	230 a	[TiBr ₆] ²⁻	· 1901	210	[TiBr ₅]-	208	-2	

⁶S. D. Ross, 'Inorganic Infrared and Raman Spectra,' McGraw-Hill, London, 1972. ^bT. Barrowcliffe, I. R. Beattie, P. Day, and K. Livingston, J. Chem. Soc. (A), 1967, 1810. ^cG. Y. Ahlijah and M. Goldstein, J. Chem. Soc. (A), 1970, 326. ^d Ref. 15. ^e Ref. 2. ^f Ref. 14.

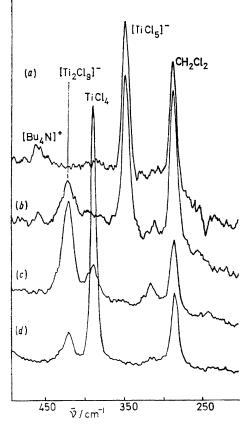
evidence supporting the formulation of this salt as $[Et_4N]_2[Ti_2Cl_{10}]$, it now seems likely by analogy with published assignments for Nb₂Cl₁₀, Ta₂Cl₁₀, and Re₂Cl₁₀¹³ that these bridge-stretching modes of the $[Ti_2Cl_{10}]^{2-}$ ion $(b_{2u}$ and b_{3u} ; point group D_{2k}) are at 317s and 212m cm⁻¹ in the i.r. spectrum, with Raman counterparts $(a_g$ and $b_{1g})$ at 308s and 233w cm⁻¹. This is similar to the assignment already suggested for these modes in the $[PCl_4]^+$ salt.¹² The possibility that the 317 cm⁻¹ i.r. band, assigned above to bridge stretching, is due instead to v_3 of $[TiCl_6]^{2-}$ ions present as an impurity is ruled out

¹³ (a) I. R. Beattie, T. R. Gilson, and G. A. Ozin, J. Chem. Soc.
 (A), 1968, 2765; (b) D. A. Edwards and R. T. Ward, *ibid.*, 1970, 1617.

strongly polarized band at 209 cm⁻¹, and on precipitation of the solute a complex of composition $[Bu_4N][TiBr_5]$ was obtained which also showed this band.

In order to establish the assignment of these bands to the five-co-ordinate $[\text{TiCl}_5]^-$ and $[\text{TiBr}_5]^-$ ions, Table 3 shows a correlation of the strongest Raman bands (the symmetric breathing frequencies v_1) of the series $[\text{MX}_4]^{n-}$, $[\text{MX}_5]^{(n+1)-}$, and $[\text{MX}_6]^{(n+2)-}$ (X = Cl or Br) for which there are well established data. Where small differences exist in the frequencies reported for different salts, Table 3 lists those relating to the salt with the largest cation or to solution measurements. ¹⁴ W. van Bromswyk, R. J. H. Clark, and L. Maresca, *Inorg. Chem.*, 1969, **8**, 1395. In each case the strongest Raman band of the $[MX_5]^{(n+1)-}$ species lies within $\pm 10 \text{ cm}^{-1}$ of the mean of the v_1 frequencies of $[MX_4]^{n-}$ and $[MX_6]^{(n+2)-}$, with the exception of the lone-pair ion $[\text{SbCl}_5]^{2-}$ where the strongest Raman band is unexpectedly high in frequency and has been discussed in this respect by Beattie *et al.*¹⁵ In contrast the strongest Raman bands of the dimeric M_2X_{10} species are normally at higher frequencies, especially the bands of molecules or ions with low mass ratios $m_M : m_X$, as shown in Table 4. These correlations

TABLE 4 Most intense Raman bands (cm⁻¹) of MX₅ and M₂X₁₀ species, and their mass ratios $m_{\rm M}$: $m_{\rm X}$


	Species,				
	Α		в	$\mathbf{B} - \mathbf{A}$	m_{M} : m_{X}
[TiBr ₅]-	209	[Ti ₂ Br ₁₀] ²⁻	300	91	0.60
NbBr	234 ª	Nb2Br10	291	57	1.16
[TiCl ₅]-	348	[Ti ₂ Cl ₁₀] ²⁻	389	41	1.35
TaBr	240 •	Ta2Br10	266	26	2.26
NbCl ₅	394 •	Nb ₂ Cl ₁₀	416	22	2.62
TaCl ₅	406 ª	Ta ₂ Cl ₁₀ b	418	12	5.10
• I. R.	Beattie an	nd G. A. Ozin,	J. Chem. 3	Soc. (A) ,	1969, 1691

I. R. Beattie and G. A. Ozin, J. Chem. Soc. (A), 1969, 1691.
Ref. 13a.

thus provide a clear spectroscopic differentiation (for $m_{\rm M}:m_{\rm X}\lesssim 2.5:1$) of five-co-ordinate MX₅ species from their bridged dimers, using only the frequencies of the strongest Raman bands and without analysis of the details of the spectra. For $[{\rm TiCl}_5]^-$ and $[{\rm TiBr}_5]^-$ the strongest Raman bands are within only 5 cm⁻¹ of the mean of the TiX₄ and $[{\rm TiX}_6]^{2-}$ frequencies, and their identification as five-co-ordinate species thus seems beyond doubt.

The frequencies and intensities for the $[\text{TiCl}_5]^-$ ion closely resemble the pattern of bands shown by other trigonal-bipyramidal pentachloro-species, and their assignment in Table 2 on the basis of D_{3h} symmetry is thus straightforward by analogy with that for SbCl₅.³ For $[\text{TiBr}_5]^-$, only the strongest Raman band could be recorded because of the dark red colour of this ion. Only a partial assignment could therefore be made for $[\text{TiBr}_5]^-$. This assignment is also given in Table 2, and is notable in showing the order $v_3 \gg v_1$ also observed for PCl₅² but not for other MCl₅ species and which is consistent with the high mass ratios $m_{\text{Br}}: m_{\text{Ti}}$ and $m_{\text{Cl}}: m_{\text{P}}$.

The observation that $[Bu_4N][TiCl_5]$ and $[Bu_4N][TiBr_5]$ are soluble in dichloromethane with no significant change in their Raman spectra is itself further evidence that these are salts of the singly charged $[TiX_5]^-$ ions, since salts of doubly charged ions are usually either insoluble in this low dielectric-constant solvent or dissolve with dissociation of the doubly charged ion. An interesting illustration of this insolubility of multiply charged ions in dichloromethane was seen when a solution of TiCl₄ was titrated with tetrapropylammonium chloride in this solvent. The only salts which precipitated during the titration were $[Et_4N]_2[Ti_2Cl_{10}]$ and $[Et_4N]_2[TiCl_6]$, which were formed as the ratio $TiCl_4: Cl^$ approached 1:1 and 1:2 respectively ([$Pr_{a}N$][$Ti_{2}Cl_{a}$] also precipitates in the early stages of the titration if concentrated solutions are used). The [Ti₂Cl₁₀]²⁻ and $[TiCl_{e}]^{2-}$ ions were not detected in the solutions by Raman spectroscopy, however, the only chloro-species observed being TiCl_4 and the singly charged $[\text{Ti}_2\text{Cl}_9]^$ and $[\text{TiCl}_5]^-$ ions. Spectra showing the variations in the intensities of the Raman bands of these solution species as TiCl_4 was titrated with tetrabutylammonium chloride in dichloromethane solution are reproduced in the Figure. These were obtained by placing the reaction vessel directly in the Raman spectrometer and are therefore not of high quality, but they are reproduced to show how effectively this titration may be followed by Raman spectroscopy. The Figure also shows a

Raman spectra of solutions prepared by titrating tetrabutylammonium chloride with TiCl_4 in dichloromethane. Mol ratios $[\text{Bu}_4\text{N}]\text{Cl}$: TiCl_4 are (a) 1.0, (b) 0.8, (c) 0.5, and (d) 0.1:1

weak band at 318 cm⁻¹ which reached a maximum intensity at $TiCl_4$: $Cl^- = 3: 1$ and which may be due to a further solute species $[Ti_3Cl_{13}]^-$.

The $[Ti_2Cl_9]^-$ and $[Ti_2Br_9]^-$ Ions.—Raman spectra of the salts $[Et_4N][Ti_2Cl_9]$ and $[Et_4N][Ti_2Br_9]$ were also recorded in the course of this study (Table 5). I.r. spectra of both these salts have been reported previously,^{3,16} but the published measurements on the bromocomplex were only above 200 cm⁻¹ and these have therefore now been extended to lower frequencies. Raman spectra of solutions of $[Bu_4N][Ti_2Cl_9]$ and $[Bu_4N][Ti_2Br_9]$ in dichloromethane were also recorded,

I. R. Beattie, F. C. Stokes, and L. E. Alexander, J.C.S. Dalton, 1973, 465.
 R. J. H. Clark and M. A. Coles, J.C.S. Dalton, 1972, 2454.

and these showed bands at 420 (polarized) and at 317 (vs, polarized) and $192m \text{ cm}^{-1}$ respectively.

The $[\text{Ti}_2\text{Cl}_9]^-$ ion has been shown by X-ray studies to have the expected D_{3h} symmetry with three bridging chlorine atoms,⁶ and the vibrational spectra in Table 5

TABLE	5
-------	---

Vibration bands (cm ⁻¹)	of the $[Ti_2Cl_9]^-$ and $[Ti_2Br_9]^-$ ions
$[Et_{a}N][Ti_{2}Cl_{p}]$	[Et ₄ N][Ti ₂ Br ₂]

C== -#=7 C -= -83		L		
Raman	I.r.*	Raman	I.r.	Assignment
420vs		317vs		a_1'
	416vs		324vs	
396m		292m		$a_2''_{e''} \neq v_t$
384m	379vs	281 (sh)	276vs	e')
	268m		182m	$a_{2}^{\prime\prime}$
233	230w	192m	192w (sh)	$e' \int v_b$
	188w		143w `	
	171w	92m	91w	
	74w		70mw	
	57w		57w	
		* Ref. 3.		

qualitatively resemble the spectra of the [Tl₂Cl₀]³⁻ ion ^{13a} which also has this structure. A vibrational assignment has been proposed for Cs3[Tl2Cl9] based on single-crystal Raman studies,^{13a} and the partial assignments given in Table 5 are made by analogy with this. All four terminal stretching modes of both [Ti₂Cl₉]⁻ and $[Ti_2Br_a]^-$ were observed, of which three are Raman active $(a_1', e', and e'')$ and two i.r. active $(a_2'' and e')$, and the assignment follows straightforwardly from a comparison of the Raman and i.r. spectra. Of the four bridge-stretching modes $(a_1', a_2'', e', and e'')$, however, only two were observed for each salt and the assignment of these is thus less certain. The possibility that the Raman band of [Ti₂Br₉]⁻ at 192 cm⁻¹, which is one of the frequencies assigned to bridge stretching, is v_1 of $[TiBr_6]^{2-}$ ions present as an impurity is ruled out by the absence of v_3 of $[TiBr_6]^{2-}$ (243 cm⁻¹)¹⁴ from the i.r. spectrum of the same sample.

The highest frequencies of both [Ti2Br9]- (320-280 cm⁻¹) and of $[Ti_2Br_{10}]^{2-}$ (310–270 cm⁻¹) at first seem very high for terminal metal-bromine stretching modes, which normally lie in the range 180-240 cm⁻¹ for octahedrally co-ordinated metal atoms. This, however, presumably reflects the fact that all the terminal modes of $[Ti_2Br_9]^-$ and $[Ti_2Br_{10}]^{2-}$ involve considerable motion of the relatively light titanium atoms. Thus similar high frequencies are observed for the asymmetric stretching modes v_5 of $[TiBr_5]^-$ (341 cm⁻¹) and v_3 of $[TiBr_6]^{2-}$ (243 cm⁻¹)¹⁴ which also involve motions of the titanium atoms, whereas the symmetric stretching frequencies v_1 of these ions are much lower (209 and 190 cm⁻¹, respectively). For the corresponding chlorospecies the masses of the titanium and chlorine atoms are more closely similar and the symmetric and asymmetric stretching frequencies are thus closer together: $[Ti_2Cl_9]^-$ (420–380); $[Ti_2Cl_{10}]^{2-}$ (390–340); $[TiCl_5]^-$ [348 (ν_1) and 411 (ν_5)]; and $[TiCl_6]^{2-}$ [320 (ν_1) and 316 $(\nu_3)~{\rm cm}^{-1}].^{14}$

EXPERIMENTAL

Tetraethylammonium and tetraphenylarsonium chloride were dehydrated by treating with thionyl chloride and removing volatiles *in vacuo*. Tetrapropyl- and tetrabutylammonium halides and [Et₄N]Br were rendered anhydrous by standing their solutions in dichloromethane over calcium hydride. Dichloromethane was purified by treating with titanium(rv) chloride, fractionally distilling under dry nitrogen, and standing over calcium hydride.

All preparations and manipulations of halogenotitanate salts were carried out in a dry-bag flushed with dry nitrogen. Exposure to moist air or use of unpurified dichloromethane solvent resulted in products showing spurious spectral bands. The complexes $[Cl_4P]_2[Ti_2Cl_{10}]$, $[Et_4N]_2[Ti_2Cl_{10}]$, and [Et4N][Ti2Cl9] were prepared as described previously.3,12 Contamination of [Et₄N]₂[Ti₂Cl₁₀] with [Et₄N][Ti₂Cl₉] or [Et₄N]₂[TiCl₆] was avoided by using a slight excess of TiCl₄ in the preparation; [Et₄N][Ti₂Cl₉] which was then present in the product was removed from the less soluble [Et₄N]₂[Ti₂Cl₁₀] by washing with 5% nitromethane in dichloromethane. Analogous procedures using anhydrous tetrapropylammonium chloride in dichloromethane solution yielded precipitates of [Pr₄N][Ti₂Cl₉] and [Pr₄N]₂[Ti₂Cl₁₀]. Similarly, slow addition of a dry solution of [Et₄N]Br to 2 mol equiv. of TiBr₄ in dichloromethane yielded dark red [Et₄N][Ti₂Br₉]; ¹⁶ using equimolar amounts, a black precipitate of tetraethylammonium μ -dibromo-octabromodititanate was obtained (Found: Br, 68.95. C₁₆H₄₀Br₁₀NTi₂ requires Br, 69.15%).

Tetrabutylammonium pentachlorotitanate was prepared by mixing equimolar amounts of $[Bu_4N]Cl$ and TiCl₄ in dichloromethane solution and precipitating the product by addition of several volumes of sodium-dried light petroleum. In order to ensure equimolar amounts before precipitation it was found convenient to monitor the Raman spectrum of the dichloromethane solution and to add reagents until only solute bands due to $[TiCl_5]^-$ were observed (Found: Cl, 37.9. $C_{16}H_{36}Cl_5NTi$ requires Cl, 37.75%). Tetraphenylarsonium pentachlorotitanate was similarly prepared from $[Ph_4As]Cl$ and TiCl₄ in dichloromethane solutions. Using $[Bu_4N]Br$ and TiBr₄ a similar procedure yielded dark red tetrabutylammonium pentabromotitanate (Found: Br, 57.95. $C_{16}H_{36}Br_5NTi$ requires Br, 57.9%).

Spectral Measurements.—Raman spectra were recorded with a Coderg PH1 spectrometer with a 150 mW He–Ne laser. I.r. spectra above 200 cm⁻¹ were measured with a Perkin-Elmer 225 spectrophotometer and from 400 to 40 cm⁻¹ with a Beckman-R.I.I.C. FS720 interferometric spectrometer. The solid samples were examined as petroleum-jelly mulls prepared in a nitrogen-flushed drybag, and the caesium iodide plates used to support the mulls for measurements above 200 cm⁻¹ were protected from contact with the mulls by thin films of Polythene.

We thank the S.R.C. for the award of a research studentship (to C. S. C.).

[4/2725 Received, 30th December, 1974]